Blow up and global existence for the periodic Phan-Thein-Tanner model

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and blow-up of solution of Cauchy problem for the sixth order damped Boussinesq equation

‎In this paper‎, ‎we consider the existence and uniqueness of the global solution for the sixth-order damped Boussinesq equation‎. ‎Moreover‎, ‎the finite-time blow-up of the solution for the equation is investigated by the concavity method‎.

متن کامل

Global Existence and Blow-Up Solutions and Blow-Up Estimates for Some Evolution Systems with p-Laplacian with Nonlocal Sources

This paper deals with p-Laplacian systems ut − div(|∇u|p−2∇u) = ∫ Ωv α(x, t)dx, x ∈Ω, t > 0, vt − div(|∇v|q−2∇v) = ∫ Ωu β(x, t)dx, x ∈ Ω, t > 0, with null Dirichlet boundary conditions in a smooth bounded domain Ω ⊂ RN , where p,q ≥ 2, α,β ≥ 1. We first get the nonexistence result for related elliptic systems of nonincreasing positive solutions. Secondly by using this nonexistence result, blow ...

متن کامل

Global and blow-up solutions for a mutualistic model

We study the global and blow-up solutions for a strong degenerate reaction–diffusion system modeling the interactions of two biological species. The local existence and uniqueness of a classical solution are established. We further give the critical exponent for reaction and absorption terms for the existence of global and blow-up solutions. We show that the solution may blow up if the intraspe...

متن کامل

Global existence and blow-up for a system describing the aggregation of microglia

We consider the system u t = ∆u − ∇ · (χ u∇v) + ∇ · (ξ u∇w), τ v t = ∆v + αu − βv, τ w t = ∆w + γ u − δw, which has been proposed to describe the aggregation of microglia. We study the problem of global existence and blow-up for this system.

متن کامل

Global existence and blow-up analysis for some degenerate and quasilinear parabolic systems

This paper deals with positive solutions of some degenerate and quasilinear parabolic systems not in divergence form: u1t = f1(u2)(∆u1 + a1u1), · · ·, u(n−1)t = fn−1(un)(∆un−1 + an−1un−1), unt = fn(u1)(∆un+anun) with homogenous Dirichlet boundary condition and positive initial condition, where ai (i = 1, 2, ···, n) are positive constants and fi (i = 1, 2, ···, n) satisfy some conditions. The lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2019

ISSN: 0022-0396

DOI: 10.1016/j.jde.2019.07.005